Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution.

Identifieur interne : 000122 ( Main/Exploration ); précédent : 000121; suivant : 000123

Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution.

Auteurs : Zhichao Xia [République populaire de Chine] ; Yue He [République populaire de Chine] ; Lei Yu [République populaire de Chine] ; Rubing Lv [République populaire de Chine] ; Helena Korpelainen [Finlande] ; Chunyang Li [République populaire de Chine]

Source :

RBID : pubmed:31487045

Abstract

Soil phosphorus (P) availability and its distribution influence plant growth and productivity, but how they affect the growth dynamics and sex-specific P acquisition strategies of dioecious plant species is poorly understood. In this study, the impact of soil P availability and its distribution on dioecious Populus cathayana was characterized. P. cathayana males and females were grown under three levels of P supply, and with homogeneous or heterogeneous P distribution. Females had a greater total root length, specific root length (SRL), biomass and foliar P concentration under high P supply. Under P deficiency, males had a smaller root system than females but a greater exudation of soil acid phosphatase, and a higher colonization rate and arbuscular mycorrhizal hyphal biomass, suggesting a better capacity to mine P and a stronger association with arbuscular mycorrhizal fungi to forage P. Heterogeneous P distribution enhanced growth and root length density (RLD) in females. Female root proliferation in P-rich patches was related to increased foliar P assimilation. Localized P application for increasing P availability did not enhance the biomass accumulation and the morphological plasticity of roots in males, but it raised hyphal biomass. The findings herein indicate that sex-specific strategies in P acquisition relate to root morphology, root exudation and mycorrhizal symbioses, and they may contribute to sex-specific resource utilization patterns and niche segregation.

DOI: 10.1111/nph.16170
PubMed: 31487045


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution.</title>
<author>
<name sortKey="Xia, Zhichao" sort="Xia, Zhichao" uniqKey="Xia Z" first="Zhichao" last="Xia">Zhichao Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Yue" sort="He, Yue" uniqKey="He Y" first="Yue" last="He">Yue He</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Lei" sort="Yu, Lei" uniqKey="Yu L" first="Lei" last="Yu">Lei Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lv, Rubing" sort="Lv, Rubing" uniqKey="Lv R" first="Rubing" last="Lv">Rubing Lv</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, FI-00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31487045</idno>
<idno type="pmid">31487045</idno>
<idno type="doi">10.1111/nph.16170</idno>
<idno type="wicri:Area/Main/Corpus">000725</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000725</idno>
<idno type="wicri:Area/Main/Curation">000725</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000725</idno>
<idno type="wicri:Area/Main/Exploration">000725</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution.</title>
<author>
<name sortKey="Xia, Zhichao" sort="Xia, Zhichao" uniqKey="Xia Z" first="Zhichao" last="Xia">Zhichao Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Yue" sort="He, Yue" uniqKey="He Y" first="Yue" last="He">Yue He</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Lei" sort="Yu, Lei" uniqKey="Yu L" first="Lei" last="Yu">Lei Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lv, Rubing" sort="Lv, Rubing" uniqKey="Lv R" first="Rubing" last="Lv">Rubing Lv</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, FI-00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang</wicri:regionArea>
<wicri:noRegion>Zhejiang</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Soil phosphorus (P) availability and its distribution influence plant growth and productivity, but how they affect the growth dynamics and sex-specific P acquisition strategies of dioecious plant species is poorly understood. In this study, the impact of soil P availability and its distribution on dioecious Populus cathayana was characterized. P. cathayana males and females were grown under three levels of P supply, and with homogeneous or heterogeneous P distribution. Females had a greater total root length, specific root length (SRL), biomass and foliar P concentration under high P supply. Under P deficiency, males had a smaller root system than females but a greater exudation of soil acid phosphatase, and a higher colonization rate and arbuscular mycorrhizal hyphal biomass, suggesting a better capacity to mine P and a stronger association with arbuscular mycorrhizal fungi to forage P. Heterogeneous P distribution enhanced growth and root length density (RLD) in females. Female root proliferation in P-rich patches was related to increased foliar P assimilation. Localized P application for increasing P availability did not enhance the biomass accumulation and the morphological plasticity of roots in males, but it raised hyphal biomass. The findings herein indicate that sex-specific strategies in P acquisition relate to root morphology, root exudation and mycorrhizal symbioses, and they may contribute to sex-specific resource utilization patterns and niche segregation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31487045</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>225</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution.</ArticleTitle>
<Pagination>
<MedlinePgn>782-792</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16170</ELocationID>
<Abstract>
<AbstractText>Soil phosphorus (P) availability and its distribution influence plant growth and productivity, but how they affect the growth dynamics and sex-specific P acquisition strategies of dioecious plant species is poorly understood. In this study, the impact of soil P availability and its distribution on dioecious Populus cathayana was characterized. P. cathayana males and females were grown under three levels of P supply, and with homogeneous or heterogeneous P distribution. Females had a greater total root length, specific root length (SRL), biomass and foliar P concentration under high P supply. Under P deficiency, males had a smaller root system than females but a greater exudation of soil acid phosphatase, and a higher colonization rate and arbuscular mycorrhizal hyphal biomass, suggesting a better capacity to mine P and a stronger association with arbuscular mycorrhizal fungi to forage P. Heterogeneous P distribution enhanced growth and root length density (RLD) in females. Female root proliferation in P-rich patches was related to increased foliar P assimilation. Localized P application for increasing P availability did not enhance the biomass accumulation and the morphological plasticity of roots in males, but it raised hyphal biomass. The findings herein indicate that sex-specific strategies in P acquisition relate to root morphology, root exudation and mycorrhizal symbioses, and they may contribute to sex-specific resource utilization patterns and niche segregation.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Zhichao</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">0000-0001-6715-8986</Identifier>
<AffiliationInfo>
<Affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lv</LastName>
<ForeName>Rubing</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Korpelainen</LastName>
<ForeName>Helena</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Chunyang</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-2895-2786</Identifier>
<AffiliationInfo>
<Affiliation>College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, Zhejiang, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>10</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">P deficiency</Keyword>
<Keyword MajorTopicYN="Y">dioecy</Keyword>
<Keyword MajorTopicYN="Y">heterogeneous phosphorus (P) supply</Keyword>
<Keyword MajorTopicYN="Y">morphological plasticity of roots</Keyword>
<Keyword MajorTopicYN="Y">mycorrhizal associations</Keyword>
<Keyword MajorTopicYN="Y">rhizosphere processes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31487045</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16170</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adams TS, McCormack ML, Eissenstat DM. 2013. Foraging strategies in trees of different root morphology: the role of root lifespan. Tree Physiology 33: 940-948.</Citation>
</Reference>
<Reference>
<Citation>Barber S. 1995. Soil nutrient bioavailability: a mechanistic approach, 2nd edn. New York, NY, USA: Wiley.</Citation>
</Reference>
<Reference>
<Citation>Barot S, Bornhofen S, Boudsocq S, Raynaud X, Loeuille N, Schweitzer J. 2016. Evolution of nutrient acquisition: when space matters. Functional Ecology 30: 283-294.</Citation>
</Reference>
<Reference>
<Citation>Barrett SC, Hough J. 2012. Sexual dimorphism in flowering plants. Journal of Experimental Botany 64: 67-82.</Citation>
</Reference>
<Reference>
<Citation>Charlesworth D. 2002. Plant sex determination and sex chromosomes. Heredity 88: 94-101.</Citation>
</Reference>
<Reference>
<Citation>Chen J, Dong T, Duan B, Korpelainen H, Niinemets U, Li C. 2015. Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana. Plant, Cell & Environment 38: 1285-1298.</Citation>
</Reference>
<Reference>
<Citation>Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM. 2016. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences, USA 113: 8741-8746.</Citation>
</Reference>
<Reference>
<Citation>Chen Y, Nguyen THN, Qin J, Jiao Y, Li Z, Ding S, Lu Y, Liu Q, Luo ZB. 2018. Phosphorus assimilation of Chinese fir from two provenances during acclimation to changing phosphorus availability. Environmental and Experimental Botany 153: 21-34.</Citation>
</Reference>
<Reference>
<Citation>Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT. 2015. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytologist 208: 114-124.</Citation>
</Reference>
<Reference>
<Citation>Eppley SM. 2006. Females make tough neighbors: sex-specific competitive effects in seedlings of a dioecious grass. Oecologia 146: 549-554.</Citation>
</Reference>
<Reference>
<Citation>Eppley SM, Mercer CA, Haaning C, Graves CB. 2009. Sex-specific variation in the interaction between Distichlis spicata (Poaceae) and mycorrhizal fungi. American Journal of Botany 96: 1967-1973.</Citation>
</Reference>
<Reference>
<Citation>Fitter AH. 1994. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW, eds. Exploitation of environmental heterogeneity of plants. New York, NY, USA: Academic Press, 305-323.</Citation>
</Reference>
<Reference>
<Citation>Fort F, Cruz P, Catrice O, Delbrut A, Luzarreta M, Stroia C, Jouany C. 2015. Root functional trait syndromes and plasticity drive the ability of grassland Fabaceae to tolerate water and phosphorus shortage. Environmental and Experimental Botany 110: 62-72.</Citation>
</Reference>
<Reference>
<Citation>Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F. 2018. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytologist 219: 1338-1352.</Citation>
</Reference>
<Reference>
<Citation>Frostegård Å, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22: 59-65.</Citation>
</Reference>
<Reference>
<Citation>Funayama-Noguchi S, Noguchi K, Terashima I. 2015. Comparison of the response to phosphorus deficiency in two lupin species, Lupinus albus and L. angustifolius, with contrasting root morphology. Plant, Cell & Environment 38: 399-410.</Citation>
</Reference>
<Reference>
<Citation>Graff P, Aguiar MR, Almeida RJ. 2018. Females engage in stronger relationships: positive and negative effects of shrubs are more intense for Poa ligularis females than for males. Annals of Botany 122: 435-443.</Citation>
</Reference>
<Reference>
<Citation>Graff P, Rositano F, Aguiar MR, Wilson S. 2013. Changes in sex ratios of a dioecious grass with grazing intensity: the interplay between gender traits, neighbour interactions and spatial patterns. Journal of Ecology 101: 1146-1157.</Citation>
</Reference>
<Reference>
<Citation>Grime JP. 1994. The role of plasticity in exploiting environmental heterogeneity. In: Caldwell MM, Pearcy RW, eds. Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and belowground. San Diego, CA, USA: Academic Press, 1-19.</Citation>
</Reference>
<Reference>
<Citation>He H, Peng Q, Wang X, Fan C, Pang J, Lambers H, Zhang X. 2017. Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant and Soil 416: 565-584.</Citation>
</Reference>
<Reference>
<Citation>Hodge A. 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162: 9-24.</Citation>
</Reference>
<Reference>
<Citation>Hodge A. 2006. Plastic plants and patchy soils. Journal of Experimental Botany 57: 401-411.</Citation>
</Reference>
<Reference>
<Citation>Hou X, Tigabu M, Zhang Y, Ma X, Cai L, Wu P, Liu A, Wang C, Qiu H. 2016. Root plasticity, whole plant biomass, and nutrient accumulation of Neyraudia reynaudiana in response to heterogeneous phosphorus supply. Journal of Soils and Sediments 17: 172-180.</Citation>
</Reference>
<Reference>
<Citation>Hultine KR, Bush SE, West AG, Burtch KG, Pataki DE, Ehleringer JR. 2008. Gender-specific patterns of aboveground allocation, canopy conductance and water use in a dominant riparian tree species: Acer negundo. Tree Physiology 28: 1383-1394.</Citation>
</Reference>
<Reference>
<Citation>Hultine KR, Grady KC, Wood TE, Shuster SM, Stella JC, Whitham TG. 2016. Climate change perils for dioecious plant species. Nature Plants 2: 16109.</Citation>
</Reference>
<Reference>
<Citation>Jackson RB, Manwaring JH, Caldwell MM. 1990. Rapid physiological adjustment of roots to localized soil enrichment. Nature 344: 58-60.</Citation>
</Reference>
<Reference>
<Citation>Johnson CM, Ulrich A. 1959. Analytical methods for use in plant analysis. Berkeley, CA, USA: University of California, Agricultural Experiment Station.</Citation>
</Reference>
<Reference>
<Citation>Juvany M, Munne-Bosch S. 2015. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. Journal of Experimental Botany 66: 6083-6092.</Citation>
</Reference>
<Reference>
<Citation>Kavka M, Polle A. 2016. Phosphate uptake kinetics and tissue-specific transporter expression profiles in poplar (Populus × canescens) at different phosphorus availabilities. BMC Plant Biology 16: 206.</Citation>
</Reference>
<Reference>
<Citation>Kudoyarova GR, Dodd IC, Veselov DS, Rothwell SA, Veselov SY. 2015. Common and specific responses to availability of mineral nutrients and water. Journal of Experimental Botany 66: 2133-2144.</Citation>
</Reference>
<Reference>
<Citation>Laliberte E, Lambers H, Burgess TI, Wright SJ. 2015. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist 206: 507-521.</Citation>
</Reference>
<Reference>
<Citation>Lambers H, Mougel C, Jaillard B, Hinsinger P. 2009. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil 321: 83-115.</Citation>
</Reference>
<Reference>
<Citation>Le Roux MR, Khan S, Valentine AJ. 2009. Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48: 102-109.</Citation>
</Reference>
<Reference>
<Citation>Lei Y, Jiang Y, Chen K, Duan B, Zhang S, Korpelainen H, Niinemets U, Li C. 2017. Reproductive investments driven by sex and altitude in sympatric Populus and Salix trees. Tree Physiology 37: 1503-1514.</Citation>
</Reference>
<Reference>
<Citation>Li C, Xu G, Zang R, Korpelainen H, Berninger F. 2007. Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiology 27: 399-406.</Citation>
</Reference>
<Reference>
<Citation>Li H, Zhang D, Wang X, Li H, Rengel Z, Shen J. 2019. Competition between Zea mays genotypes with different root morphological and physiological traits is dependent on phosphorus forms and supply patterns. Plant and Soil 434: 125-137.</Citation>
</Reference>
<Reference>
<Citation>Li Y, Duan B, Chen J, Korpelainen H, Niinemets U, Li C. 2016. Males exhibit competitive advantages over females of Populus deltoides under salinity stress. Tree Physiology 36: 1573-1584.</Citation>
</Reference>
<Reference>
<Citation>Li Z, Wu N, Liu T, Chen H, Tang M. 2015. Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. Physiologia Plantarum 155: 192-204.</Citation>
</Reference>
<Reference>
<Citation>Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, Guo D. 2015. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist 208: 125-136.</Citation>
</Reference>
<Reference>
<Citation>López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L. 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology 129: 244-256.</Citation>
</Reference>
<Reference>
<Citation>Lyu Y, Tang HL, Li HG, Zhang FS, Rengel Z, Whalley WR, Shen JB. 2016. Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply. Frontiers in Plant Science 7: 15.</Citation>
</Reference>
<Reference>
<Citation>McNickle GG, Deyholos MK, Cahill JF, Schweitzer J. 2016. Nutrient foraging behaviour of four co-occurring perennial grassland plant species alone does not predict behaviour with neighbours. Functional Ecology 30: 420-430.</Citation>
</Reference>
<Reference>
<Citation>Melnikova NV, Borkhert EV, Snezhkina AV, Kudryavtseva AV, Dmitriev AA. 2017. Sex-specific response to stress in Populus. Frontiers in Plant Science 8: 6.</Citation>
</Reference>
<Reference>
<Citation>Meng ZS, Xiang W, Su GK, Li DD, Dong TF, Peng JY, Li XD, Gong XP, Liang N, Xu X. 2018. Spatial distribution of male and female Populus cathayana populations and its drivers in Xiaowutai Mountains, Hebei, China. Chinese Journal of Plant Ecology 42: 1145-1153 (In Chinese).</Citation>
</Reference>
<Reference>
<Citation>Mommer L, Visser EJ, van Ruijven J, de Caluwe H, Pierik R, de Kroon H. 2011. Contrasting root behaviour in two grass species: a test of functionality in dynamic heterogeneous conditions. Plant and Soil 344: 347-360.</Citation>
</Reference>
<Reference>
<Citation>Montesinos D, Villar-Salvador P, Garcia-Fayos P, Verdu M. 2012. Genders in Juniperus thurifera have different functional responses to variations in nutrient availability. New Phytologist 193: 705-712.</Citation>
</Reference>
<Reference>
<Citation>Neumann G. 2006. Quantitative determination of acid phosphatase activity in the rhizosphere and on the root surface. In: Luster J, Finlay R, eds. Handbook of methods used in rhizosphere research. Birmensdorf, Switzerland: Swiss Federal Research Institute WSL, 79-85.</Citation>
</Reference>
<Reference>
<Citation>Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. 2012. Responses of root architecture development to low phosphorus availability: a review. Annals of Botany 112: 391-408.</Citation>
</Reference>
<Reference>
<Citation>Obeso J. 2002. The costs of reproduction in plants. New Phytologist 155: 321-348.</Citation>
</Reference>
<Reference>
<Citation>Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KH, Bolland MD, Denton MD, Lambers H. 2010. Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil 331: 241-255.</Citation>
</Reference>
<Reference>
<Citation>Peret B, Clement M, Nussaume L, Desnos T. 2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16: 442-450.</Citation>
</Reference>
<Reference>
<Citation>Randriamanana TR, Nybakken L, Lavola A, Aphalo PJ, Nissinen K, Julkunen-Tiitto R. 2014. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories. Tree Physiology 34: 471-487.</Citation>
</Reference>
<Reference>
<Citation>Retuerto R, Vilas JS, Varga S. 2018. Sexual dimorphism in response to stress. Environmental and Experimental Botany 146: 1-4.</Citation>
</Reference>
<Reference>
<Citation>Richardson AE, Hocking PJ, Simpson RJ, George TS. 2009. Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science 60: 124-143.</Citation>
</Reference>
<Reference>
<Citation>Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349: 121-156.</Citation>
</Reference>
<Reference>
<Citation>Robakowski P, Pers-Kamczyc E, Ratajczak E, Thomas PA, Ye ZP, Rabska M, Iszkulo G. 2018. Photochemistry and antioxidative capacity of female and male Taxus baccata L. acclimated to different nutritional environments. Frontiers in Plant Science 9: 13.</Citation>
</Reference>
<Reference>
<Citation>Rodríguez A, Durán J, Fernández-Palacios JM, Gallardo A. 2009. Spatial variability of soil properties under Pinus canariensis canopy in two contrasting soil textures. Plant and Soil 322: 139-150.</Citation>
</Reference>
<Reference>
<Citation>Shen JB, Yuan LX, Zhang JL, Li HG, Bai ZH, Chen XP, Zhang WF, Zhang FS. 2011. Phosphorus dynamics: from soil to plant. Plant Physiology 156: 997-1005.</Citation>
</Reference>
<Reference>
<Citation>Smith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3rd edn. London, UK: Academic Press.</Citation>
</Reference>
<Reference>
<Citation>Song H, Lei Y, Zhang S. 2018. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats. Journal of Proteomics 178: 123-127.</Citation>
</Reference>
<Reference>
<Citation>Tamme R, Gazol A, Price JN, Hiiesalu I, Pärtel M. 2016. Co-occurring grassland species vary in their responses to fine-scale soil heterogeneity. Journal of Vegetation Science 27: 1012-1022.</Citation>
</Reference>
<Reference>
<Citation>Tognetti R. 2012. Adaptation to climate change of dioecious plants: does gender balance matter? Tree Physiology 32: 1321-1324.</Citation>
</Reference>
<Reference>
<Citation>Valentinuzzi F, Pii Y, Vigani G, Lehmann M, Cesco S, Mimmo T. 2015. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria× ananassa. Journal of Experimental Botany 66: 6483-6495.</Citation>
</Reference>
<Reference>
<Citation>Varga S, Kytöviita MM. 2008. Sex-specific responses to mycorrhiza in a dioecious species. American Journal of Botany 95: 1225-1232.</Citation>
</Reference>
<Reference>
<Citation>Varga S, Vega-Frutis R, Kytöviita MM, Franken P. 2017. Competitive interactions are mediated in a sex-specific manner by arbuscular mycorrhiza in Antennaria dioica. Plant Biology 19: 217-226.</Citation>
</Reference>
<Reference>
<Citation>Verdú M, García-Fayos P. 2003. Frugivorous birds mediate sex-biased facilitation in a dioecious nurse plant. Journal of Vegetation Science 14: 35-42.</Citation>
</Reference>
<Reference>
<Citation>Vierheilig H, Coughlan A, Wyss U, Piche Y. 1998. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology 64: 5004-5007.</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Lambers H. 2019. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant and Soil. doi: 10.1007/s11104-019-03972-8.</Citation>
</Reference>
<Reference>
<Citation>Wang LX, Mou PP, Jones RH. 2006. Nutrient foraging via physiological and morphological plasticity in three plant species. Canadian Journal of Forest Research 36: 164-173.</Citation>
</Reference>
<Reference>
<Citation>Wen Z, Li H, Shen Q, Tang X, Xiong C, Li H, Pang J, Ryan MH, Lambers H, Shen J. 2019. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist 223: 882-895.</Citation>
</Reference>
<Reference>
<Citation>Wu N, Li Z, Liu H, Tang M. 2015. Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress. Acta Physiologiae Plantarum 37: 183.</Citation>
</Reference>
<Reference>
<Citation>Wu Q, Tang Y, Dong T, Liao Y, Li D, He X, Xu X. 2018. Additional AM fungi inoculation increase Populus cathayana intersexual competition. Frontiers in Plant Science 9: 607.</Citation>
</Reference>
<Reference>
<Citation>Xu X, Yang F, Xiao X, Zhang S, Korpelainen H, Li C. 2008. Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant, Cell & Environment 31: 850-860.</Citation>
</Reference>
<Reference>
<Citation>Yan F, Zhu Y, Müller C, Zörb C, Schubert S. 2002. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology 129: 50-63.</Citation>
</Reference>
<Reference>
<Citation>Zemunik G, Turner BL, Lambers H, Laliberté E. 2015. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1: 15050.</Citation>
</Reference>
<Reference>
<Citation>Zhang S, Jiang H, Zhao H, Korpelainen H, Li C. 2014. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies. Tree Physiology 34: 343-354.</Citation>
</Reference>
<Reference>
<Citation>Zhang Y, Zhou Z, Yang Q. 2012. Genetic variations in root morphology and phosphorus efficiency of Pinus massoniana under heterogeneous and homogeneous low phosphorus conditions. Plant and Soil 364: 93-104.</Citation>
</Reference>
<Reference>
<Citation>Zhu J, Lynch JP. 2004. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Functional Plant Biology 31: 949.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
<li>République populaire de Chine</li>
</country>
<region>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xia, Zhichao" sort="Xia, Zhichao" uniqKey="Xia Z" first="Zhichao" last="Xia">Zhichao Xia</name>
</noRegion>
<name sortKey="He, Yue" sort="He, Yue" uniqKey="He Y" first="Yue" last="He">Yue He</name>
<name sortKey="Li, Chunyang" sort="Li, Chunyang" uniqKey="Li C" first="Chunyang" last="Li">Chunyang Li</name>
<name sortKey="Lv, Rubing" sort="Lv, Rubing" uniqKey="Lv R" first="Rubing" last="Lv">Rubing Lv</name>
<name sortKey="Yu, Lei" sort="Yu, Lei" uniqKey="Yu L" first="Lei" last="Yu">Lei Yu</name>
</country>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Korpelainen, Helena" sort="Korpelainen, Helena" uniqKey="Korpelainen H" first="Helena" last="Korpelainen">Helena Korpelainen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31487045
   |texte=   Sex-specific strategies of phosphorus (P) acquisition in Populus cathayana as affected by soil P availability and distribution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31487045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020